A Drosophila Model of ALS: Human ALS-Associated Mutation in VAP33A Suggests a Dominant Negative Mechanism
نویسندگان
چکیده
ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological analyses. By simultaneously assessing the effects of VAP(wt) and VAP(P58S) on synaptic morphology and structure, we demonstrate that the phenotypes produced by neuronal expression of VAP(P58S) resemble VAP loss of function mutants and are opposite those of VAP overexpression, suggesting that VAP(P58S) may function as a dominant negative. This is brought about by aggregation of VAP(P58S) and recruitment of wild type VAP into these aggregates. Importantly, we also demonstrate that the ALS8 mutation in dVAP33A interferes with BMP signaling pathways at the neuromuscular junction, identifying a new mechanism underlying pathogenesis of ALS8. Furthermore, we show that mutant dVAP33A can serve as a powerful tool to identify genetic modifiers of VAPB. This new fly model of ALS, with its robust pathological phenotypes, should for the first time allow the power of unbiased screens in Drosophila to be applied to study of motor neuron diseases.
منابع مشابه
An Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملA Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1*♦
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we hav...
متن کاملMutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملWild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS.
The RNA-binding protein TDP-43 has been linked to amyotrophic lateral sclerosis (ALS) both as a causative locus and as a marker of pathology. With several missense mutations being identified within TDP-43, efforts have been directed towards generating animal models of ALS in mouse, zebrafish, Drosophila and worms. Previous loss of function and overexpression studies have shown that alterations ...
متن کاملMolecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach
Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with amyotrophic lateral sclerosis (ALS). Among more than 100 ALS-associated SOD1 mutations, premature termination codon (PTC) mutations exclusively occur in exon 5, the last exon of SOD1. The molecular basis of ALS-associated toxicity of the mutant SOD1 is not fully understood. Here, we show that nonsense-mediated mRNA decay (NMD) u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008